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Abstract

We propose a network architecture to perform efficient

scene understanding. This work presents three main nov-

elties: the first is an Improved Guided Upsampling Mod-

ule that can replace in toto the decoder part in common

semantic segmentation networks. Our second contribution

is the introduction of a new module based on spatial sam-

pling to perform Instance Segmentation. It provides a very

fast instance segmentation, needing only a thresholding as

post-processing step at inference time. Finally, we propose

a novel efficient network design that includes the new mod-

ules and test it against different datasets for outdoor scene

understanding. To our knowledge, our network is one of the

most efficient architectures for scene understanding pub-

lished to date, furthermore being 8.6% more accurate than

the fastest competitor on semantic segmentation and almost

five times faster than the most efficient network for instance

segmentation.

1. Introduction

Most of the current architectures that perform semantic

segmentation rely on an encoder-decoder architecture. This

is the simplest and most effective way to design the model

in order to increase the receptive field of the network at the

same time keeping the computational cost feasible. To miti-

gate the effect of information loss caused by downsampling,

state-of-the-art architectures make use of additional ways to

increase the receptive field, e.g. dilated convolutions [63],

ASPP [11], PSP [65]. However the use of dilated convo-

lutions results in computational heavy architectures and, in

most cases, the best trade-off consists of a mix of down-

sampling and dilation. As a consequence, common network

architectures, employ upsampling operators to output a se-

mantic map with the same resolution as the input.

Our first contribution consists of a new module named

Improved Guided Upsampling Module i.e. iGUM. It re-

places traditional upsampling operators like bilinear and

nearest neighbor and can be plugged into any existing ar-

chitecture and trained end-to-end within the network. With
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Figure 1. Speed vs mIoU computed on Cityscapes test set for se-

mantic segmentation architectures. Points are proportionally sized

with respect to the number of parameters of the model.

a low additional computational cost, it helps to improve the

prediction along object boundaries when upsampling out-

put probability maps of semantic segmentation networks.

We discovered that it can replace the entire decoder part of

efficient semantic segmentation networks, obtaining a con-

sistent speed-up and even an improvement of performance

in most cases.

As our second contribution we designed a novel mod-

ule that model Semantic Instance Segmentation as a dif-

fusion process through a differentiable sampling operator.

The resulting layer has three main advantages: It is compu-

tationally lightweight allowing for very fast inference at test

time. It can be trained end-to-end with the whole network

and requires only a thresholding as post-processing step.

Our third contribution consists of a novel lightweight

neural architecture to perform scene understanding in ap-

plications where speed is a mandatory requirement. We

run experiments to assess different aspects of our modules

and our complete architecture on three different datasets:

Camvid [7], PASCAL VOC 2012 [20] and Cityscapes [15].

Our network is able to achieve 68.9% of mIoU on the popu-

lar Cityscapes dataset at 113 FPS on a Titan Xp GPU being
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Figure 2. Our network design. The decoder is composed of three parts: the semantic segmentation part, the Instance Segmentation module

and the Improved Guided Upsampling Module

8.6% more accurate than the fastest published network up

to date.

2. Related Works

Efficiency-oriented architectures SegNet[4], one of the

first efficiency-oriented architectures together with [58], in-

troduced an efficient way to exploit high-resolution infor-

mation by saving max-pooling indices from the encoder

and using them during upsampling. ENet authors [43]

designed the first highly-efficient architecture by making

use of clever design patterns and state-of-the-art building

blocks: residual blocks [28], early downsampling, and 1D

factorized convolutions [56]. We think that the use of fac-

torized convolutions is the main reason for the success of

this architecture. ERFNet [48] authors implemented an ar-

chitecture with a very similar overall structure to ENet but

with a residual module named Non-Bottleneck-1D module.

The overall architecture raises the performance of ENet of

a great margin. We will build our fast architecture on top

of ERFNet. ESPNet [40] is a very recent, efficient architec-

ture that makes use of a novel module named ESP module.

It achieves a very good tradeoff in terms of accuracy and

network speed.

Instance Segmentation architectures Following [19]

we categorize instance segmentation architectures in four

different classes: Proposal-based, Recurrent methods,

Energy-based and Clustering. [24, 13] are examples of

proposal-based approaches. They employ MCG [2] as a

class-agnostic predictor of object proposals and they sub-

sequently make use of a classification step to produce in-

stances. A good number of recent works rely on the joint

use of an object detector and a semantic segmentation net-

work [17, 18, 3, 25]. As a matter of fact, recent state-of-

the-art instance segmentation algorithms [36, 27] are based

on enhanced versions of the Faster R-CNN object detector

[22] but, from the point-of-view of this work, architectures

like PANet [36] or Mask-RCNN [27], are still computation-

ally too heavy to be employed on edge devices for real-time

applications.

Other works like [54] fall into the category of recurrent

methods, i.e. they adopt recurrent networks to generate in-

stances in a sequential way. [49] uses LSTMs to output

binary segmentation maps for each instance. [47] enhance

the approach of [49] by adding an object detector network

to refine the output. [5, 32] uses alternative ways to de-

tect instances. [5] exploit the watershed transform. [32]

uses an approach based on CRF together with a customized

MultiCut algorithm. The last category of methods involves

the transformation of the input image into a representation

that is afterward clustered into a set of discrete instances

[50, 64]. [19] introduces a novel loss function that induces

an embedding space representing separate instances. As a

second step, it employs a clustering algorithm to extract the

segmented instances. Instead [59, 30] trains a network to

predict a dense vector field where each vector points to-

wards the instance center. The fastest architectures for in-

stance segmentation up to date belong to this category, see

also Table 7. However, accurate clustering algorithms are

quite heavy to run on a large set of points (pixels) with high-

resolution images. This makes impractical to use this cate-

gory of algorithms in real settings with real-time processing

pipelines.

Our network architecture performs instance segmenta-

tion in a similar way to the clustering methods. However,

it makes the use of a clustering algorithm unnecessary by

exploiting a very simple and efficient iterative sampling al-

gorithm. We will explain in details our method for instance
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segmentation and outline the differences with [59, 30] in

Section 4.

3. Guided Upsampling Module

Most state-of-the-art semantic segmentation networks

are based on encoder-decoder architectures [12, 65, 11, 8,

62, 38, 43, 48, 40]. Since the task involves a dense per-pixel

prediction, usually a probability vector over the classes dis-

tribution is predicted for each pixel. This is arguably ineffi-

cient both computationally and from a memory occupation

point-of-view. A more efficient output representation would

involve a non-uniform density grid which follows the ob-

jects density distribution in the scene. A step towards this

direction has been presented in [39] with the introduction

of the Guided Upsampling Module (GUM). GUM is an up-

sampling operator built to efficiently handle segmentation

maps and improve them along objects’ boundaries. Clas-

sical upsampling operators (e.g. nearest neighbor or bilin-

ear) make use of a regular grid to sample from the low-

resolution image. GUM introduces a warping grid named

Guidance Offset Table to correct the prediction map along

object boundaries. The Guidance Offset Table is predicted

by a neural network branch named Guidance Module. The

whole module can be plugged-in in any existing architec-

ture and trained end-to-end. Given Vi the output feature

map and Unm the input feature map, GUM over the nearest

neighbor operator can be defined as follows:

Vi =

H∑

n

W∑

m

Unm(δ(⌊xs

i + pi + 0.5⌋ −m)

δ(⌊ys

i + qi + 0.5⌋ − n))

(1)

where xs
i and ysi are the spatial sampling coordinates. ⌊xs

i +
0.5⌋ rounds coordinates to the nearest integer location and

δ is a Kronecker function. pi and qi are what makes GUM

different from nearest-neighbor: two offsets that shifts the

sampling coordinates of each grid element in x and y di-

mensions respectively. They are the output of a function φi

of i, the Guidance Module, defined as: φi = (pi, qi). For

the definition of GUM over bilinear sampling refer to [39].

The resulting operator is differentiable with respect to U , pi
and qi. In [39], the GUM module is applied to the network

output probability map, even though it could be employed

anywhere within the architecture.

3.1. Improved Guided Upsampling Module

Let Ucnm ∈ R
C×N×M be an output probability map to

be upsampled, where C represents the number of classes, N

and M are the spatial dimensions. The GUM module needs

a Guidance Offsets Table of the same spatial dimensionality

as the output features map. Let the upsampling factor be f .

To produce a feature map Vcnm ∈ R
C×fN×fM the GUM

needs to predict a guidance offsets table of cardinality 2 ×
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Figure 3. A toy example: upsampling a 1D probability map with

two pixels (A and B on the horizontal axis) and two classes (1
and 2 on the vertical axis). The argmax boundary can be moved in

two ways: with the orange arrows i.e. GUM [39], or with the red

arrows i.e. Improved GUM. The latter formulation requires only

two sampling offsets.

fN × fM . This is certainly more efficient than predicting

the full resolution probability map, especially if C is large

because, regardless of the cardinality of classes, the network

has to predict only a 2-dimensional vector (offset) for each

pixel in the output map. However, a lightweight decoder

structure is still needed. Our desiderata are to reduce even

more the computational burden and to completely remove

the decoder part of the network.

A geometric view on GUM Figure 3 depicts a toy ex-

ample on the use of GUM to upsample an output probability

map. The spatial dimension is visualized on the x-axis. In

this example, only one dimension is represented although in

the real problem there are two spatial dimensions. On the

y-axis is represented the probability over the two classes.

The two dashed vertical lines indicate two points in the

low-resolution probability map. Pairs of black points ly-

ing on these lines, i.e (A1, A2) and (B1, B2) represent the

predicted probability vector over the two classes (1 and 2).

The continuous black lines represent the sub-pixel values

of the probability distribution obtained by linear interpola-

tion. Notice that, this visualization in a continuous space,

allow us to abstract from the upsampling factor. A gray

vertical line is depicted on the argmax boundary. i.e. the

point where the probability distribution is equal over the

two classes and where the argmax value changes. By look-

ing at Figure 3 it is clear that the position of the original

boundary is dependent on the values of the four points A1,

A2, B1, B2. Thus, the boundary subpixel position is tied

to the two adjacent probability vectors. The idea of GUM

is represented in Figure 3 by the multiple thin parallel or-

ange arrows. They are spatial sampling vectors predicted

by the network at high resolution. The probability value is

sampled, i.e. copied, from the head to the tail of each ar-
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Figure 5. Our proposed Lightweight Non-Bottleneck Module. w
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kernel sizes (d1, d2) and the numbere of output channels f .

row. With this sampling operation, it is possible to move

the argmax boundary as shown in Figure 3. Notice that the

orange parallel arrows are the same for the two classes: i.e.

the boundary can be moved by predicting the same arrows

for every class.

Improved GUM intuition Our intuition is that the

argmax boundary can be moved by predicting only the low-

resolution sampling offsets, i.e. the red arrows at the bottom

of Figure 3. (The other bold red arrows are the same arrows

moved along the vertical axis). By looking at the parallel

thin arrows in between, we observe that they can be ob-

tained by interpolating the bold arrows. We can move the

argmax boundary by predicting only one additional value

low-resolution pixel. Intuitively we can extend this concept

to two dimensions by predicting a 2D spatial offsets vec-

tor for each spatial location and obtain the other sampling

offsets by bilinear interpolation. To summarize, a network

with the Improved Guided Upsampling Module, results in

a very simple structure. It is composed by an encoder with

two branches: the first predicts the output probability map

and the second predicts a low-resolution Guidance Offsets

Table. Both have spatial dimension N × M . The Guid-

ance Offsets Table is then upsampled to the target resolution

fN × fM depending on the upsampling factor f . Finally

the high resolution Guidance Offsets Table is given as input

to the GUM module as in [39]. The resulting module can

be plugged into any common CNN architecture and trained

end-to-end with the whole network.

Figure 6. Top: visualization of the Guidance Offsets Table of the

Instance Module. Bottom: visualization obtained by coloring with

a different color each unique value in the output map.

4. Instance Segmentation Module

The most efficient architectures for instance segmenta-

tion e.g. [30, 41] (see Section 2) are trained to produce a

dense output map with a particular form of embedding for

each pixel. To extract every single instance, the embed-

ding needs to be post-processed by a clustering algorithm.

Usually, the time needed to run the clustering algorithm on

the raw output is not considered when evaluating the speed

of state-of-the-art methods. As a matter of fact, running

a clustering algorithm on a high-resolution output is com-

putationally intensive, making these approaches inefficient

in real-world scenarios. Consider for example the mean-

shift algorithm [14] employed by [19]. It has a complexity

of O(Tn2) where T is the number of iterations and n is

the number of points in the data set. In case of Cityscapes

dataset where the resolution of the images is 1024 × 2048
the number of points is 2 Million and the number of opera-

tions can easily scale up to 20 G-FLOPs, which is roughly

the amount of operations needed to perform a forward pass

on a VGG-19 architecture [51] (one of the heaviest archi-

tectures to date [6]).

Instance Segmentation by Sampling We propose an in-

stance segmentation module that associates to each pixel

the instance centroid, similarly to [30, 41]. We train our
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network with an L2 regression loss applied directly to the

network output:

LInstance =
1

N

∑

n∈N

‖in − în‖2 (2)

where i ∈ R
2 is the instance center in pixel coordinates.

în ∈ R
2 is the vector predicted by the network. The loss

is averaged over every labeled pixel n ∈ N in a minibatch.

The peculiar trait of our method lies in the architecture. Fig-

ure 4 shows how the Instance Segmentation module works:

a Guidance Module predicts a Guidance Offsets Table of

vectors (bearing the terminology from [39]). The usual way

to train instance segmentation networks [30] is to directly

apply the loss function in Eq.2 to the Guidance Offsets Ta-

ble. In our architecture instead, a differentiable sampler,

like the one used in [39] or [29], samples 2D points from

a fixed regular grid using the Guidance Offsets Table. The

fixed regular grid codifies the 2D coordinates of the exact

location of each pixel. This sampling process is applied t

times sharing the same Guidance Offsets Table (see Figure

4). Thus, by consecutive sampling steps, the 2D coordinate

values of instance centers are spread all over the area cov-

ered by the instance. Finally, the loss function in Eq. 2 is

computed on the sampled output. Figure 4 shows the gradi-

ent flow: notice that, it flows backward through every sam-

pler step but not to the fixed regular grid. The only way to

decrease the loss function is to produce a Guidance Offsets

Table with vectors that point towards the instance center.

There is a main advantage of this approach over the clas-

sical method of training directly the vector field: in an ideal

setting, if the network predicts a perfect output, all the vec-

tors associated with a particular instance will points pre-

cisely to the instance center. This doesn’t happen in prac-

tical cases, thus, the need of a clustering algorithm. Here

emerges the major advantage of our approach: by sampling

multiple times, a diffusion process is generated. As a conse-

quence, the value of the instance center propagates through

all the pixels associated with that particular instance. If a

far vector points to an imprecise location towards the in-

stance center, by successive sampling steps, the center value

propagates to increasing areas eventually covering all the

instance area. Top visualization in Figure 6 shows the Guid-

ance Offsets Table overimposed on the input image. Note

that the vectors’ magnitude decrease drastically near the in-

stance center. The visualization at the bottom of Figure

6 is obtained by summing for each pixel location the 2D

centroids’ predictions coordinates. A single value per loca-

tion is obtained (it can be interpreted as a unique instance

identifier). In Figure 6 a different color is assigned to each

unique value. The only post-processing step applied to the

final output is a thresholding over the instance area. Very

small false positives are eliminated by this step, they can be

noticed by zooming Figure 6 (bottom) along object bound-

aries.

Two Practical Tips First, to simplify the learning pro-

cess, the values of the Guidance Offsets Tables both for the

Improved GUM and for the Instance Module are limited to

the interval [−1, 1] by mean of a tanh(x) = ex−e−x

ex+e−x
func-

tion. Second, the GUM operator used to upsample the in-

stance output is based on Bilinear sampling at training time,

and Nearest-neighbor at test time. Nearest-neighbor is the

right choice to upsample unique id values but it is not di-

rectly differentiable w.r.t the Guidance Offsets Table.

5. Network Architecture

Our architecture for semantic segmentation consists of a

lightweight encoder and an iGUM layer as decoder. For the

task of instance segmentation we added the Instance Seg-

mentation Module before the guided upsampling (refer to

Figure 2 for details). The iGUM is described in details in

Section 3 whereas the encoder has a very simple structure

inspired by [48]. However, the main building block is a

novel Lightweight Non-bottleneck Module described in this

section.

Encoder-only architecture In encoder-decoder archi-

tectures, the decoder plays a refinement role where features

are subsequently upsampled to match the input size and to

finally output the dense per-pixel prediction. By employing

our iGUM module we are able to completely remove the

decoder part: as shown in Table 1 this a major factor for a

highly-efficient semantic segmentation network.

Lightweight Non-Bottleneck-1D Module The Non-

Bottleneck-1D module has been proposed by Romera et

al. as the main building block of ERFNet [48]. It is a

residual block composed of 1D convolutions also known

as Asymmetric convolutions [37]. Numerous works inves-

tigated decomposed filters from a theoretical point of view,

e.g. [52, 1]) and in practical settings , e.g. [57, 55, 43, 37].

The idea is that each convolutional layer can be decomposed

in 1D filters that can additionally include a non-linearity in

between. The decomposed layers have intrinsically lower

computational cost than the corresponding full rank coun-

terparts. Our Lightweight Non-Bottleneck Module consists

in a very simple design: it is a non-bottleneck residual block

with two asymmetric kernels (3× 1) and (1× 3) preceded

and followed by 1× 1 channelwise convolutions. The mod-

ule design is depicted in Figure 5. We discovered this mod-

ule to be particularly effective as part of our architecture.

We motivate every design choice experimentally within the

ablation study in Section 6.1.

Early downsampling Following the last works on effi-

cient models [43, 63, 48, 46] our architecture employs an

early downsampling strategy to speed-up inference time. In

our network, the first layers act as early feature extractors

whereas the most intense operations are carried out by the

inner network modules to favor a more complex representa-
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tion in late activations. Our downsampling block, inspired

by [48, 43], performs downsampling by concatenating the

parallel outputs of a single 3 × 3 convolution with stride 2

and a Max-Pooling module.

6. Experiments

We built our architecture based on different types of ex-

periments to verify each design hypothesis. After present-

ing the implementation details for the sake of reproducibil-

ity, we introduce different experiments concerning the Im-

proved Guided Upsampling Module and in-depth ablation

studies on our architecture. Finally, we compare our net-

work with state-of-the-art efficient architectures on different

datasets for semantic and instance segmentation.

Evaluation metrics mean of class-wise Intersection

over Union (mIoU) is used to measure semantic segmenta-

tion quality on all datasets. It is computed as the classwise

mean of the intersection over union measure. On Camvid

dataset also the class average and the global average are

computed being the mean of the accuracy on all classes and

the global pixel accuracy respectively. Frame Per Second

(FPS) is used as speed measure, defined as the inverse of

time needed for our network to perform a single forward

pass. FPS have been computed on a single Titan Xp GPU

whether not differently specified. Following [43], we re-

moved all Batch-Normalizations at test time merging them

with close convolutions.

Training Recipes All experiments have been conducted

within the Pytorch framework [44] v1.0. For training, fol-

lowing [48] we use the Adam optimizer [31] in an initial

learning rate of 5e−4 and weight decay of 1e−4. The learn-

ing rate is scheduled by multiplying the initial learning rate

by (1 − epoc
maxEpochs

)0.9. All models are trained for 150

epochs with a mini-batch size of 8. We also include Dropout

[53] in all our Lightweight Non-Bottleneck modules as reg-

ularizers. Following [48] we set the dropout rate of the first

five modules to 0.03 and all the others to 0.3.

6.1. Results on Cityscapes

Cityscapes [15] is a large scale dataset for semantic ur-

ban scene understanding. It consists of 5000 finely an-

notated high-resolution images with pixel-level fine anno-

tations. Images have been collected in 50 different cities

around Europe, with high variability of weather conditions

and in different seasons. We used the standard split sug-

gested by the authors which consist in 2975, 500, and 1525

images for train, validation, and test sets respectively. An-

notations include 19 classes used to train and evaluate mod-

els. Following a common practice for efficient oriented

architectures [48, 43, 40], images have been subsampled

by a factor 2 for every experiment reported on Cityscapes

dataset.

Model Original Decoder iGUM Module

mIoU FPS mIoU FPS

GUNet [39] 64.8 40 64.4 48

ERFNet [48] 60.7 59 63.7 81

ENet [43] 47.3 87 55.7 137

ESPNet [40] 48.2 172 52.9 206

Table 1. mIoU and FPS on Cityscapes val set by replacing the

original decoder with our Improved Guidance Upsampling Mod-

ule in GUNet and three other efficient architectures for semantic

segmentation.

Encoder Pretraining Decoder mIoU% FPS

ERFNet (baseline) X ERFNet 72.3 60.3

ERFNet X improved GUM 71.6 84.4

Ours X improved GUM 69.3 113.1

Table 2. Ablation study on Cityscapes val dataset for our encoder

and decoder. We adopted ERFNet [48] as baseline and replaced

encoder and decoder in two steps. mIoU slighly decreases w.r.t.

the baseline but the inference speed almost doubles. Encoders

have been pre-trained on Imagenet.

Improved GUM on efficient architectures We investi-

gated the use of iGUM module on GUNet [39] as a replace-

ment for the original GUM module. Furthermore, we tested

our iGUM within three state-of-the-art efficient architec-

tures for semantic segmentation. We trained the networks

with their original decoder and compared them with modi-

fied versions where the decoder is replaced by the improved

GUM module. Table 1 shows the results of these experi-

ments: the first line shows the performance of GUM archi-

tecture with the original GUM and with our iGUM module.

The results support the theoretical study exposed in Section

3.1: by replacing GUM with iGUM in GUNet architecture

[39], the loss in accuracy is negligible. On the other hand,

the model exhibits a visible benefit in speed. Both speed

and mIoU improve over the baselines on all the other ar-

chitectures by a large margin. The baseline does not corre-

spond exactly with results reported by the papers because

we trained these three networks with the same settings ex-

posed in Section 6 which may differ from those used by

the authors to train their own architecture. Moreover, they

have not been pretrained and the speed has been evaluated

by removing the Batch-Normalization layer. For the sake

of these experiments, we are only interested in the relative

performances.

Ablation Studies We designed our network starting

from ERFNet [48] as baseline. First, we replaced the de-

coder part, which in the original ERFNet is composed of

three deconvolutions and four Non-Bottleneck-1D Mod-

ules. The introduction of the Improved GUM cause a neg-

ligible performance decrease, i.e. from 72.3 to 71.6 but im-

proves speed by 24 frames per seconds. As a second step,

we replaced also the encoder obtaining a completely new

architecture. Again, a small decrease in performance but a
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mIoU% FPS

Non-bt-1D (baseline) 63.2 84.4

X 62.4 95.3

X 63.6 96.0

X 65.6 82.3

X X X 63.1 113.1

Lightweight Non-bt-1D X X X X 64.1 113.1

Lightweight Non-bt-1D X X X X X 69.3 113.1

Table 3. Ablation study for our Lightweight Non-Bottleneck 1D

Module on Cityscapes val set.

Method IoU class iIoU class IoU category iIoU category FPS

Mapillary [8] 82.0 65.9 91.2 81.7 n/a

PSPNet [65] 81.2 59.6 91.2 79.2 2.7

FCN-8s [38] 65.3 41.7 85.7 70.1 4.9

DeepLabv3+ [12] 82.1 62.4 92.0 81.9 5.1

SegNet [4] 57.0 32.0 79.1 61.9 20.1

SQ [58] 59.8 32.3 84.3 66.0 28.7

GUNet [39] 70.4 40.8 86.8 69.1 37.0

ERFNet [48] 69.7 44.1 87.3 72.7 61.0

ContextNet [45] 66.1 36.8 82.8 64.3 62.0

ENet [43] 58.3 34.4 80.4 64.0 88.1

ESPNet [40] 60.3 31.8 82.2 63.1 112.0

Ours 68.9 39.0 85.9 66.5 113.1

Table 4. Comparison with representative architectures for seman-

tic segmentation on Cityscapes test set. mIoU evaluated by

Cityscapes evaluation server. FPS reported from original paper

if authors used a TitanX (Pascal) GPU, otherwise FPS computed

on our GPU.

large speedup compared to the baseline. Table 2 shows the

results of the two ablation experiments.

In Table 3 we show the results of the ablation exper-

iments for every choice made to obtain the Lightweight

Non-Bottleneck-1D module. The baseline is an architecture

composed by Non-bt-1D modules from [48]. A Non-bt-1D

module is composed by four factorized 1D kernels. The first

two have dilation term 1 whereas the last two have different

dilation terms, i.e from 1 to 16, depending on the position

within the architecture. We replaced the first two factorized

convolutions with 1x1 convolutions. This speeded up the

architecture by 15 FPS with a negligible mIoU decrease.

Then we removed the biases from every convolution ob-

taining an mIoU of 63.6% and a slight increase in speed.

Inspired by [43] we replaced ReLUs with PReLUs. This

increased mIoU by 2% without any loss in speed. By ap-

plying these modifications together we got a mIoU of 63%

and a very fast encoder, i.e. 113.1 FPS. Finally we moved

one 1x1 convolution to the end of the residual module like

shown in Figure 5 obtaining an mIoU of 64.1%. Last row

shows the effect of pretraining on Imagenet.

Instance Segmentation With the first cluster of experi-

ments we want to determine the best loss function to train

our architecture for the instance segmentation task. Table

5 shows results on the Cityscapes validation set in terms of

Loss Function mIoU AP AP50%

L2 65.7 10.7 20.2

L1 65.3 9.8 18.0

Smooth L1 66.7 10.2 18.3

Table 5. Different loss functions to train our instance segmentation

module. Results on Cityscapes val set.

Iterations AP AP50% ms FPS

40 10.7 20.2 10.0 105.1

30 10.7 20.2 9.0 106.4

20 10.5 20.0 8.9 107.4

15 10.3 19.3 8.8 109.3

10 9.7 17.7 8.8 109.7

7 8.5 16.0 8.7 109.7

5 7.2 14.3 8.7 110.1

3 4.0 8.6 8.7 110.2

Table 6. Experiments to assess the impact on performance and

speed w.r.t the number of iterations of sampling in the Instance

Segmentation Module. Tested on Cityscapes val set.

name AP AP 50% AP 100m AP 50m FPS

Deep Contours [61] 2.3 3.7 3.9 4.9 5.0

R-CNN + MCG convex hull [15] 4.6 12.9 7.7 10.3 0.1

FCN+Depth [60] 8.9 21.1 15.3 16.7 n/a

Joint Graph Decomposition [33] 9.8 23.2 16.8 20.3 n/a

Boundary-aware [26] 17.4 36.7 29.3 34 n/a

Discriminative Loss Function [19] 17.5 35.9 27.8 31 n/a

Dist. Watershed Transform [5] 19.4 35.3 31.4 36.8 n/a

Fast Scene Understanding [41] 21.0 38.6 34.8 38.7 21.3

Multitask Learning [30] 21.6 39 35 37 n/a

Mask R-CNN [27] 26.2 49.9 37.6 40.1 n/a

PANet [36] 31.8 57.1 44.2 46 n/a

Ours 9.2 16.8 16.4 21.4 106.4

Table 7. Comparison with State of the art methods on Cityscapes

test set from the cityscapes leaderboard.

mIoU on semantic segmentation and AP on instance seg-

mentation. Surprisingly the variance is low between differ-

ent loss functions. We decided to keep L2 loss for the next

experiments. With our second cluster of experiments we

want to assess how many sampling iterations t (see Section

4) are needed for convergence and how much they affect

performance and speed. Table 6 shows the results for these

experiments. The FPS are not very affected, due to the ef-

ficiency of the sampling module, the performances start to

degrade significantly from 15 iterations. We decided to keep

30 iterations for the next experiment. We tested the network

against the Cityscapes test set: results are shown in Table 7.

Our method achieve the 9.2% of AP which is far from the

state-of-the-art accuracy-oriented methods like PANet [36]

but it exhibit a remarkably fast inference time.

6.2. Results on Camvid

We tested our architecture on the Camvid[7] dataset. It is

composed of 367 training and 233 testing images of urban

outdoor environments. It has been tagged in eleven seman-

tic classes of which one is not evaluated and thus not used

for training. The original frame resolution is 970×720. Fol-
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Method Pretraining Class avg. mIoU Global avg.

Segnet [4] X 65.2 55.6 88.5

ENet [43] 68.3 51.3 n/a

ESPNet [40] 68.3 55.6 n/a

ERFNet [48] 65.8 53.1 86.3

ERFNet [48] X 72.5 62.7 89.4

FCN-8s [38] X n/a 57.0 88.0

Dilation8 [63] X n/a 65.3 79.0

DeepLab [9] X n/a 61.6 n/a

Ours X 76.9 68.7 91.9

Table 8. Results on Camvid test set ordered by increasing mIoU.

Our model outperform every other efficient architecture by a large

margin. It even yelds better results with respect to some accuracy-

oriented architectures.

Method mIoU%

SegNet [4] 59.10

LRR [21] 79.30

Dilation-8 [63] 75.30

FCN-8s [38] 67.20

ESPNet [40] 63.01

DeepLab [9] 79.70

RefineNet [34] 82.40

PSPNet [65] 85.40

DeepLabv3+ [12] 87.80

Ours 63.54

Table 9. Results on PASCAL VOC 2012 test set. We reported

some popular methods and the state-of-the-art on Pascal VOC.

lowing [43, 4, 40], for fair comparison, we downsampled

the images to 480× 360 pixels before training. This dataset

represents an interesting benchmark to test the behaviour

of our method with low-cardinality datasets. In Table 8

we compare the performance of our architecture with exist-

ing state-of-the-art efficient architectures. We also include

three computationally-heavy architectures. Our architecture

yields very good results with respect to other efficiency-

oriented architectures and even outperforms some accuracy-

oriented methods.

6.3. Results on PASCAL VOC 2012

We tested our network architecture against the popular

PASCAL VOC 2012 segmentation dataset [20] which con-

tains 20 object categories and a background class. It is com-

posed of 1464, 1448 and 1456 images for the training, vali-

dation and test sets respectively. Following [38, 10, 42, 16]

we used additional images to train our network with data

annotation of [23] resulting in 10582 1449 and 1456 im-

ages for training, validation and testing. Table 9 shows

a comparison of our method with state-of-the-art popu-

lar architectures. Only ESPNet and our architecture are

speed-oriented while all the others focus on accuracy. No-

tice that, besides being computationally heavy PSPNet and

DeepLabV3+ have been pretrained on COCO [35] dataset.

6.4. Speed

We report in Table 10 the speed of our network on a high-

end Titan Xp GPU with Pytorch 1.0 and CUDA 10.0. Then

NVIDIA TEGRA TX1 (Jetson)

ms fps ms fps ms fps ms fps ms fps ms fps

640× 360 1280× 720 1920× 1080 512× 256 1024× 512 2048× 1024

109 9.9 471 2.1 1.43 0.7 49 20.5 207 5.1 1228 0.9

NVIDIA TITAN Xp

640× 360 1280× 720 1920× 1080 512× 256 1024× 512 2048× 1024

4 235.9 13 79.1 29 34.4 4 242.1 8 113.1 29 34.7

Table 10. Network speed on a high-end GPU and an embedded

device.
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Figure 7. Visual results on images from three datasets: Cityscapes,

Camvid and PASCAL VOC 2012

we tested our architecture on an edge device: Nvidia Tegra

TX 1 (Jetson) with Pytorch 0.4.

7. Concluding Remarks

We presented a novel architecture for efficient scene un-

derstanding which includes a novel module to speed up the

decoder part of encoder-decoder architectures and a module

for Instance Segmentation based on iterative sampling. We

tested our architecture on three different datasets showing

that our network is fast and accurate compared to state-of-

the-art efficient architectures.
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